SEAMM

A Productivity Environment for Computational Materials Science

Eliseo Marin-Rimoldi, Jessica Nash, Paul Saxe

Molecular Sciences Software Institute, Virginia Tech

Blacksburg, VA 24060, USA

Molssi

2020 Atomistic Simulations for Industrial Needs Workshop, NIST

Thursday 6 August 2020

What is the Issue?

- "Computational Materials Science" <u>and</u> "Computational Molecular Science"
- Range of CMS Tools is Overwhelming!
 - Quantum Chemistry codes like Gaussian, QChem, Gamess, Psi4, MOPAC*
 - Quantum Monte Carlo
 - Periodic Quantum VASP, Quantum Espresso, FHI-aims, DFTB, Latte
 - Molecular Dynamics (using forcefield == atomistic potentials)
 - Biomolecular (forcefield) AMBER, CHARMM, NAMD, GROMACS
 - Materials (potentials) LAMMPS, HOOMD, GULP
 - Monte Carlo (forcefield) Towhee, Cassandra, Gibbs
 - Helper codes: phonons, cluster expansion, GASP, K-Point grid, reaction kinetics, builders, ...
 - Parameter databases: OpenKIM, Basis Set Exchange
- How to find, use and compare tools?

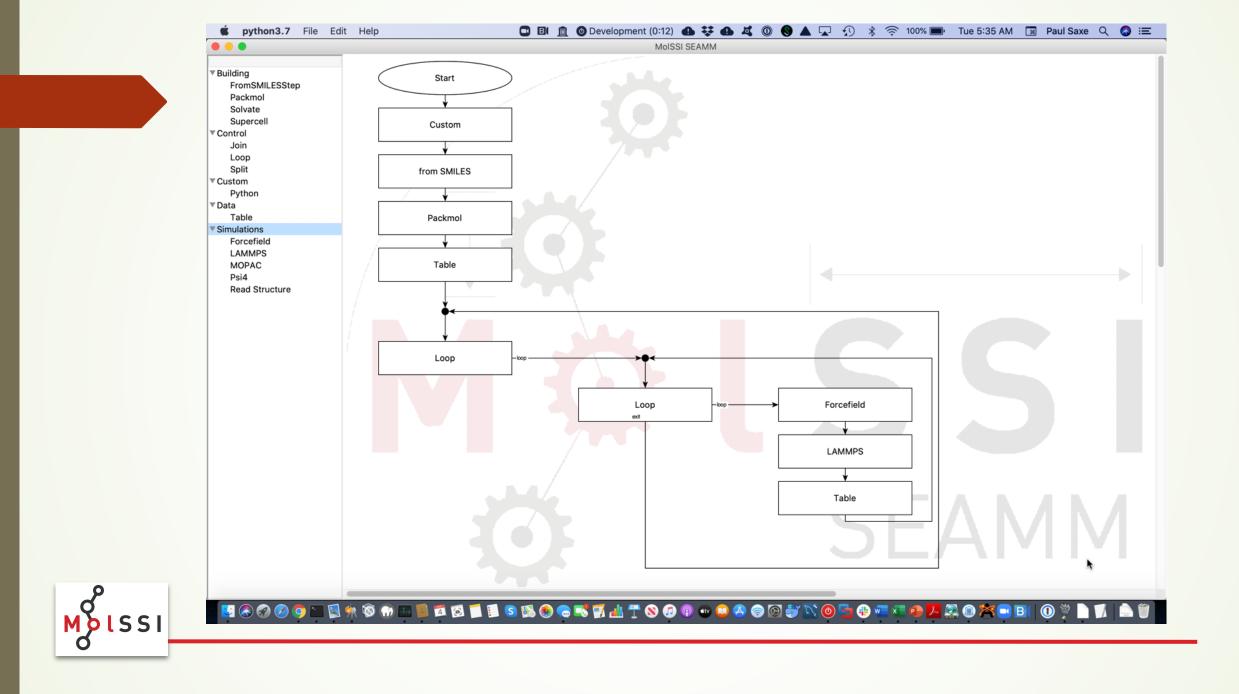
Molssi

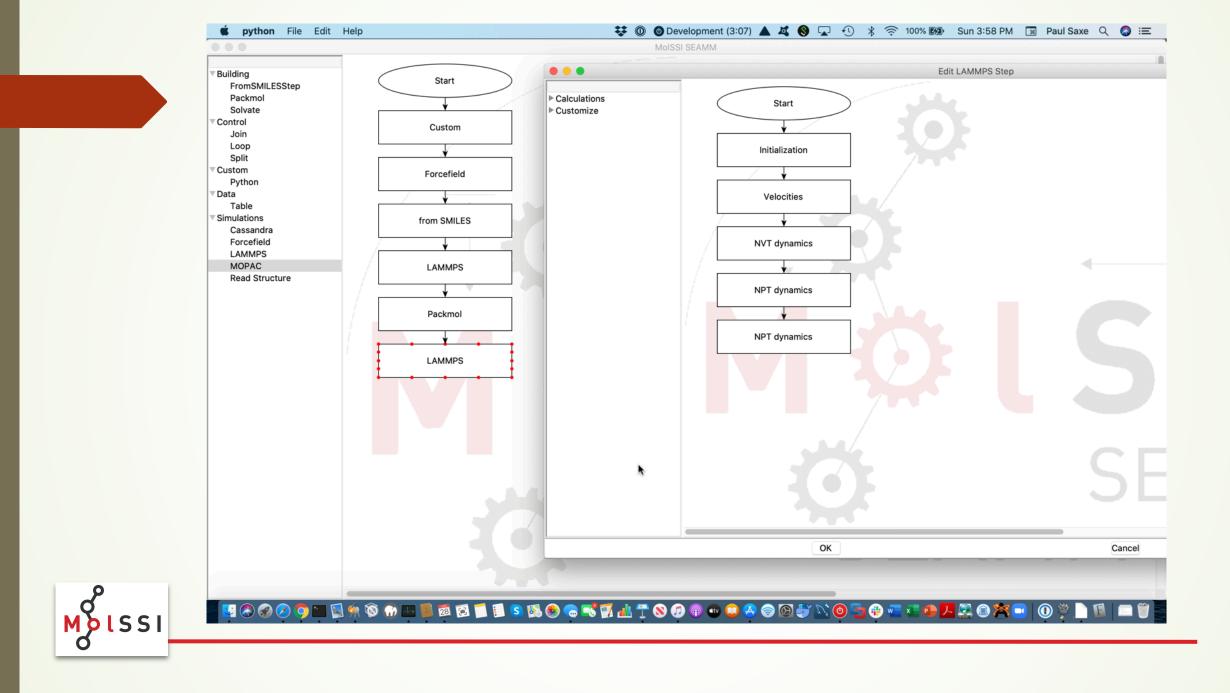
How many of these methods could help you solve your problem? How many of these methods are you comfortable using?

Why Create SEAMM?

- There is no open-source environment covering CMS & CMS
- There are tools covering subdomains
 - ASE, Pymatgen, AiiDA, AMBER, CHARMM, RMG,...
 - SEAMM can leverage them to varying degrees

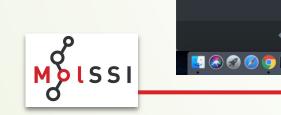
A productivity environment for users

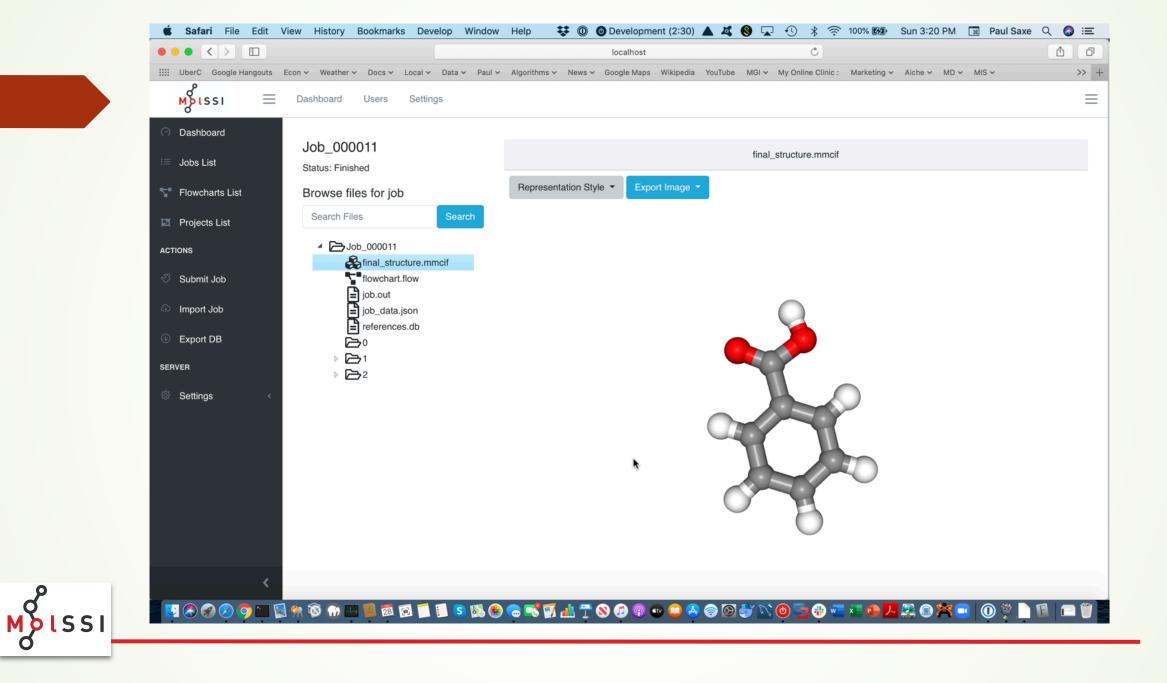

A platform for developers



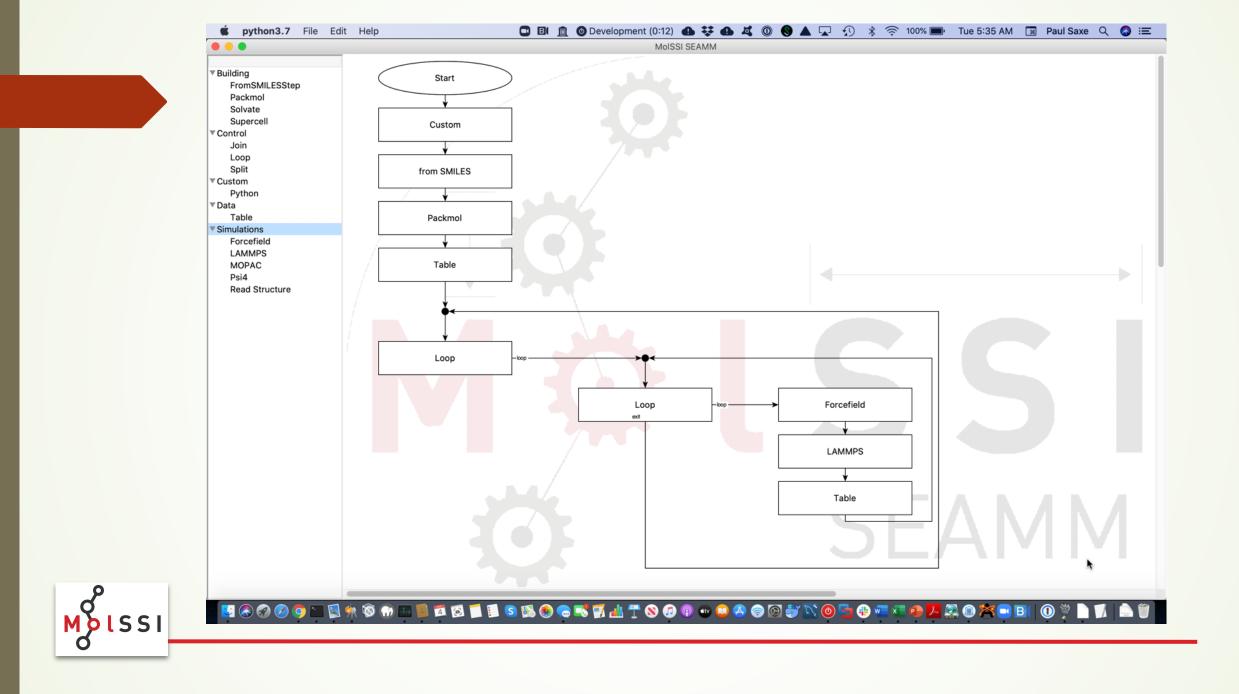
What is SEAMM, Technically?

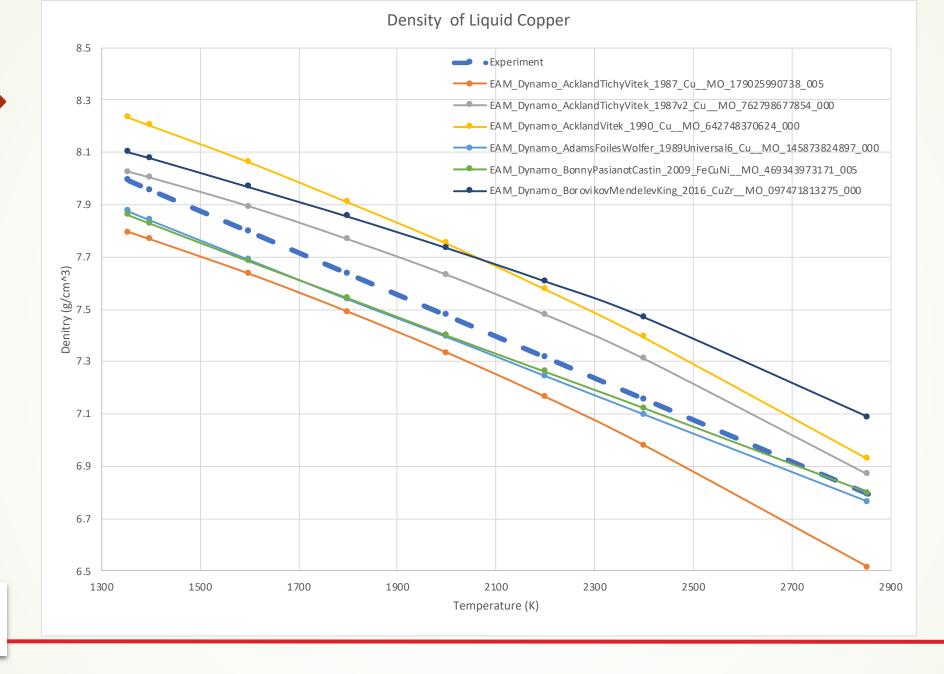
- A graphical frontend, which the user sees
- A plug-in system and extensive framework for CMS, which developers see
- A Dashboard, which is a portal to
 - A JobServer and management system for jobs
 - A Datastore containing all previous jobs and results





			Parameters	Results				
			Trajector	ry				
		Simulation time:	Simulation time: 50.0 ps					
		Timestep:	4	<u> </u>	fs 🔽			
		Sampling frequency:	40.0	fs	~			
	1	remperature				Pre	essure	
Temperature:	130	к			Туре с	of system:	fluid 🔽	
Final temperature:	130	К				Barostat:	Nose-Hoover 🏻 🚩	
Thermostat:	ose-Hoover				Change pressure with time no			
	Damping time:	100.0 f	s 🔽		Pressure: 1	100	🖌 atm	~
	Drag:	0.0			Damping time: 1	0.000	fs	
	Thermostat chain:	3			Frequency to res	et referenc	e cell: never	~
The	ermostat iterations:	1			Use corrected			~
					(here a			
		OK			Cancel			


<mark>M</mark> ອີເຣຣເ ≡	Dasl	hboard	Users Settings				
Dashboard	Sh	ow 10	entries			Search:	
Jobs List					Continue	estart Pause	👕 Delete
Flowcharts List		Job ∿∔	Title 🖏	Status 🛝	Submitted 🖘	Started 🛝	Finished
Projects List		34	Cd liquid density, loop over all OpenKIM potentials except LJ Universal	Running	2020-08- 04T00:16:26.186731	2020-08- 04T00:16:29.137699	
	0	33	Cd liquid density, loop over all OpenKIM potentials	Finished	2020-08- 03T23:53:28.237221	2020-08- 04T00:13:58.866046	
3 Submit Job		32	Cu liquid density, loop over first 6 OpenKIM potentials	Finished	shed 2020-08- 2020-08- 03T20:38:56.028302 03T21:41:3		
Export DB	0	31	Cu liquid density, loop over OpenKIM potentials	Finished	2020-08- 03T20:12:54.141401	2020-08- 03T20:24:30.345817	
ERVER		27	Ar test NPT calculation	Finished	2020-08- 03T17:13:25.429279	2020-08- 03T17:14:47.474177	
Settings <	D	25	ethane liquid density, pcff forcefield	Finished	2020-08- 03T05:52:39.712000	2020-08- 03T10:51:42.492629	
		22	Cu liquid density, looping over potentials and temperatures	Running	2020-08- 02T17:52:01.964065	2020-08- 02T17:52:02.182261	
	0	20	Cu liquid density, looping of potentials	Finished	2020-08- 02T17:45:30.122403	2020-08- 02T17:45:36.711926	
		19	Cu liquid density using EAM_Dynamo_AcklandVitek_1990_CuMO_642748370624_000	Finished	2020-08- 02T16:11:03.397694	2020-08- 02T16:21:00.816051	
	0	18	Cu liquid density using EAM_Dynamo_AcklandVitek_1990_CuMO_642748370624_000	Finished	2020-08- 02T16:02:14.308985	2020-08- 02T16:13:55.003214	
	Sh	owing 1 to	o 10 of 19 entries			Previous	1 2 Nex



	lhost:5001/#/jobs/33	Q 🕁 🛈 뵭 🚽
Molssi ≡	Dashboard Users Settings	
🔿 Dashboard		
≡ Jobs List	Job_000033 Status: Finished	job.out
Flowcharts List	Browse files for job	3 Description of the flowchart
Projects List	Search Files Search	
ACTIONS	⊿ 🗁 Job_000033	7 Step 1: Custom 0.9
🖑 Submit Job	density.csv	 Step 2: from SMILES 0.9 Create the structure from the SMILES in the variable '\$smiles_string'.
	final_structure.mmcif	10 11 Step 3: Packmol 2020.08.01
ନ Import Job	flowchart.flow	12 Creating a cubic supercell with a density of 7.5 g/ml containing about 2000 13 atoms
Export DB	job_data.json	14 15 Step 4: Table 0.9
SERVER	references.db	16 read table
Settings <		18 Step 5: Join 2020.8.3 19 Join threads together
	▷ ☎2 ▷ ☎3	20
		21 Step 6: Loop 2020.8.3 22 For rows in table results
	2⊅5 ⊳ 2⊅6	23 24 Step 6.0: Join 2020.8.3
		25 Join threads together 26
		27 Step 6.1: Loop 2020.8.3 28 Foreach potential in \$potentials
	•	29 30 Step 6.1.0: Forcefield 2020.8.2
		31 Use the OpenKIM potential '\$potential'
		33 Step 6.1.1: LAMMPS 2020.8.2.1
		34 35 Step 6.1.1.1: Initialization
<		36 Initialize the calculation with a cutoff of 10.0 Å Å, shifting the nonbond 37 energies to 0 at the cutoff. If the system is periodic the best k-space

Molssi

Main Goals

- Productivity and Usability
 - For users
 - For developers
- Reproducibility and Replicability
- Recognizing and Crediting Authors
- To bootstrap a multi-sided platform:
 - Users benefit when there are more plug-ins
 - Plug-ins benefit from more users

and

Plug-ins benefit from more plug-ins, because that brings more functionality and users

Productivity and Usability: Users

Installation – begin at the beginning

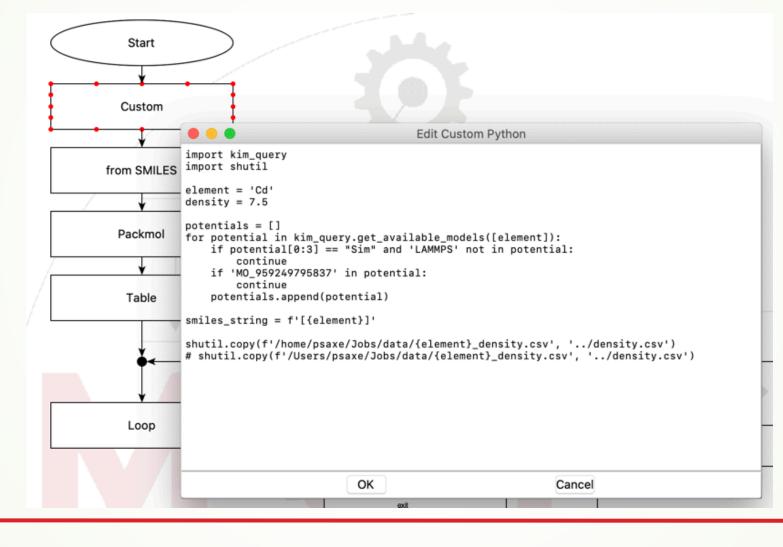
- Currently a few steps of manual installation
- Moving to a single bootstrap install
 - Automatic installation and update of components
 - Know from a flowchart what is required
 - Will provide a database of information about plug-ins
- Installation at computer centers is intrinsically more complicated
 - Leverage other tools and installations
 - Hopefully get the centers to help

Productivity and Usability: Users

Graphical User Interface

- Clearly easier for beginners
- Flowcharts
 - Avoid having to set up the GUI repeatedly
 - Are editable and composable
 - Allow sharing and using experts' "best practices"
- With care do not limit advanced users
- Job Management
- Job database stores all previous jobs
- List of appropriate citations based on actual calculations

Productivity and Usability: Users

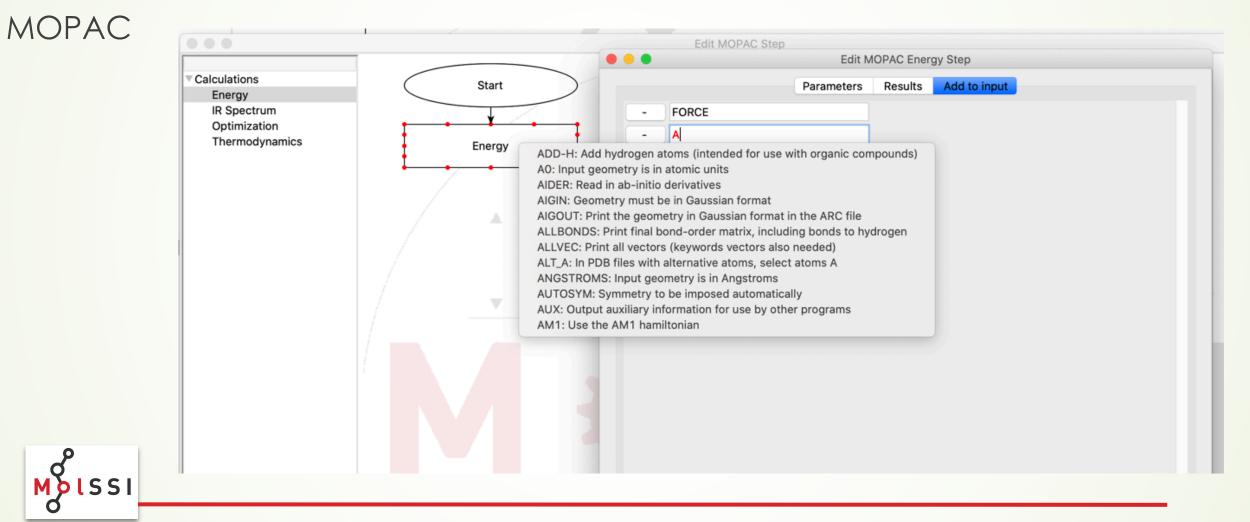

Interactive Web Dashboard

- Accessible from anywhere where you have permission to access host machine (i.e. ports are open, or can use ssh tunneling)
- Project-based
- Full permission handling (projects like folders, jobs like files) in development
- Allows online collaboration based on access and permissions

For Experts: Custom Steps and Overrides

Python

Custom Steps and Overrides

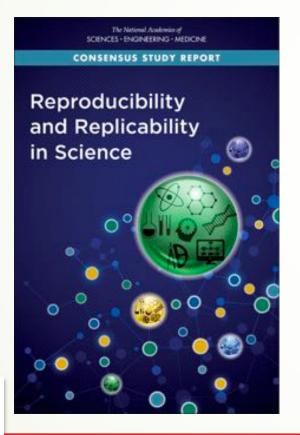

LAMMPS

	Edit LAMMPS Custom Step
	Custom script for LAMMPS
Custom	# Example script using OpenKIM in LAMMPS
	kim_init EAM_Dynamo_ErcolessiAdams_1994_AIMO_123629422045_005 meta boundary p p p
	lattice fcc 4.032 region simbox block 0 1 0 1 0 1 units lattice create_box 1 simbox
	create_atoms 1 box mass 1 26.981539
	kim_interactions Al
	variable Ec equal (pe/count(all)) print "Cohesive Energy = \${Ec} eV"
	OK Cancel

Molssi

Can be interspersed with other substeps, not just replacing everything as this example

Custom Steps and Overrides



Productivity and Usability: Developers

- Cookie-cutters available to create template projects
- Extensive and growing infrastructure
 - For control options and defining results
 - For handling units and conversions
 - Specialized widgets including units, periodic table, etc.
 - General and flexible internal data structures for the molecule/crystal structure
 - Statistical analysis for MD and Monte-Carlo
 - Database for citations
 - Translators such as OpenBabel
 - Cheminformatics via RDKit
- Growing ecosystem of plug-ins

Reproducibility and Replicability

Reproducibility is obtaining consistent results using the same input data, computational steps, methods, and code, and conditions of analysis. This definition is synonymous with "computational reproducibility," and the terms are used interchangeably in this report.

Replicability is obtaining consistent results across studies aimed at answering the same scientific question, each of which has obtained its own data. Two studies may be considered to have replicated if they obtain consistent results given the level of uncertainty inherent in the system under study.

https://www.nap.edu/catalog/25303/reproducibility-and-replicability-in-science

Reproducibility and Replicability

JCTC Journal of Chemical Theory and Computation

Article

pubs.acs.org/JCTC

Round Robin Study: Molecular Simulation of Thermodynamic Properties from Models with Internal Degrees of Freedom

Michael Schappals,[†][©] Andreas Mecklenfeld,[‡] Leif Kröger,[§][©] Vitalie Botan,[§] Andreas Köster,[∥] Simon Stephan,[†] Edder J. García,[†] Gabor Rutkai,[∥] Gabriele Raabe,[‡] Peter Klein,[⊥] Kai Leonhard,[§] Colin W. Glass,[#] Johannes Lenhard,[∇] Jadran Vrabec,[∥][©] and Hans Hasse^{*,†}

[†]Laboratory of Engineering Thermodynamics (LTD), University of Kaiserslautern, Kaiserslautern, Germany
 [‡]Institut für Thermodynamik (ift), Technische Universität Braunschweig, Braunschweig, Germany
 [§]Lehrstuhl für Technische Thermodynamik (LTT), RWTH Aachen University, Aachen, Germany
 ^{II}Thermodynamics and Energy Technology (ThEt), University of Paderborn, Paderborn, Germany
 [⊥]Fraunhofer Institute for Industrial Mathematics (ITWM), Kaiserslautern, Germany
 [#]High Performance Computing Center (HLRS), Stuttgart, Germany
 [∇]Department of Philosophy, Bielefeld University, Bielefeld, Germany

http://pubs.acs.org/doi/10.1021/acs.jctc.7b00489

Reproducibility and Replicability

In the present round robin study, the following fundamental question is addressed: Will different user groups working with different simulation codes obtain coinciding results within the statistical uncertainty of their data?

A set of 24 simple simulation tasks is defined and solved by five user groups working with eight molecular simulation codes: DL_POLY, GROMACS, IMC, LAMMPS, ms2, NAMD, Tinker, and TOWHEE.

The results reveal the challenges of carrying out molecular simulations. Several iterations were needed to eliminate gross errors.

For most simulation tasks, the remaining deviations between the results of the different groups are acceptable from a practical standpoint, but they are **often outside of the statistical errors** of the individual simulation data. However, there are also cases where the deviations are unacceptable.

1 Example for results after the first iteration

Figure 1 shows a typical example for results submitted to the central instance after the first iteration.

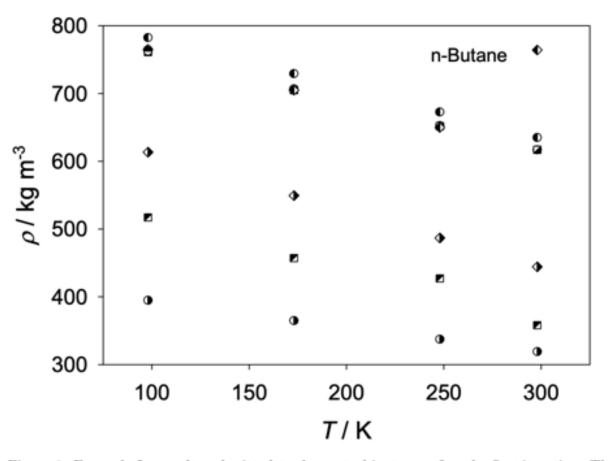
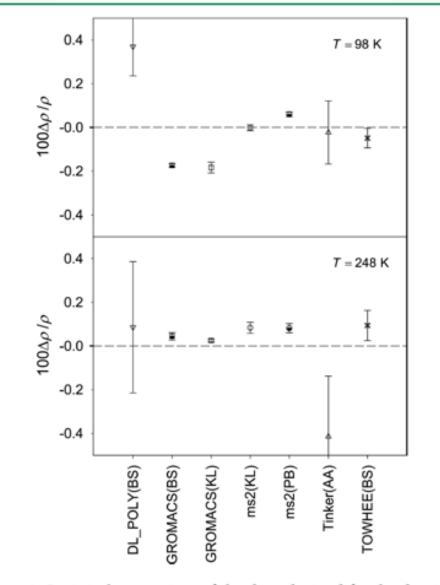



Figure 1: Example for results submitted to the central instance after the first iteration. The task was to simulate the density of n-butane at 41 MPa for the indicated temperatures with the OPLS force field. Different symbols stand for results from different user groups working with different simulation codes. There are seven different symbols, but due to overlap not all of them can be discerned. The extreme differences are in most cases due to input errors that were eliminated later, cf. Figure 3 from the main text.. A declaration of the symbols is

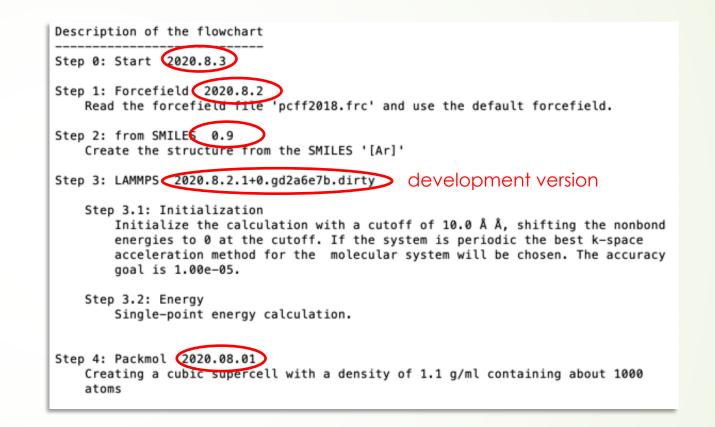


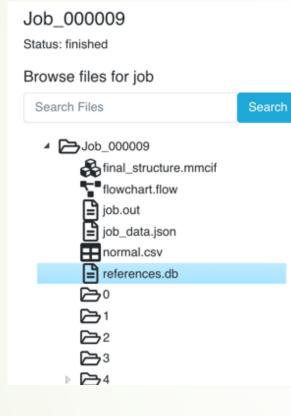
Figure 4. Statistical uncertainty of the data obtained for the density of *n*-butane at 41 MPa and 98 K (top) and 248 K (bottom) from the OPLS force field. Symbols: mean values with error bars determined from block averages of the production phase. The large error bars of the DL_POLY and Tinker data are due to the chosen barostat. Dashed line: arithmetic mean of all results.

Flowcharts Are Reproducible...

- ...mostly! For a time they are absolutely reproducible, but it decays.
- Versions of plug-ins are known and stored
- More difficult to track e.g. LAMMPS versions used, hardware such as GPU's
- We can do a "good enough" but not perfect job

Flowcharts are Replicable

- Depends on care and thoughtfulness of plug-in designers
- Many "silly" errors like typos eliminated
- Editing and applying to other systems much less error prone
- Still challenging! But developing plug-ins gives an opportunity to rethink and do better



Recognizing and Crediting Authors

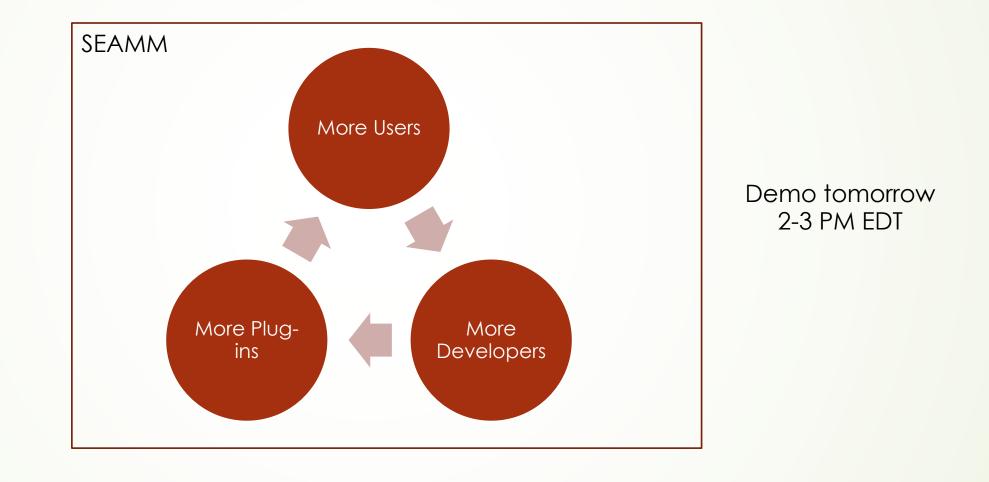
- Plug-ins use the Reference Handler to capture citations
 - At runtime, since that is only time all the details are known
 - Forcefields, basis sets, etc. depend on the system
 - Given an importance (1=most, 2=less ...)
 - Count of uses captured automatically.
- Citations printed and stored in a database with each job
- Working on developing a publishing tool
 - User marks all the jobs for e.g. a paper
 - System merges all the citations into a single list
 - Optionally prepares the flowcharts and critical files for archiving

Citations

Primary references:

(1) James J. P. Stewart; Optimization of parameters for semiempirical methods
{VI}: more modifications to the {NDDO} approximations and re-optimization of
parameters; Journal of Molecular Modeling; 2012; 19;
10.1007/s00894-012-1667-x.
 (used 12 times)

(2) Jon Baker; An algorithm for the location of transition states; Journal of Computational Chemistry; 1986; 7; 10.1002/jcc.540070402. (used 12 times)


An Open-Source Platform for CMS

- As a user SEAMM will help you be more productive, reduce tedious work, focus on the science and engineering, solve more problems and, if you are in academia, publish more papers.
- As a developer, SEAMM will get your code into the hands of more users (and help them cite your work!)
- More plug-ins is good for everyone

What Does Success Look Like?

Funding From NSF ACI-1547580.

https://molssi-seamm.github.io/index.html

psaxe@vt.edu

https://github.com/molssi-seamm